Buildings: how far can they take us in mitigating climate change?

Center for Climate Change and Sustainable Energy Policy

CENTRAL EUROPEAN UNIVERSITY

a world in which alobal afforts to combat.

Diana Ürge-Vorsatz

director

NIVERSITAS•EUROPAE•CENTRALI

Construction counts for climate Side Event, COP 15, Copenhagen Dec. 11, 2009

- Buildings are (the?) key to reaching ambitious mitigation targets...
- ...but they can also lock us into high(er) GHG concentration levels for many decades
 - more focus on retrofit is needed
 - Suboptimal retrofits (and new construction) are a major climate risk
- Building enegy-efficiency may also have the largest co-benefits among mitigation options

Buildings are key in climate change mitigation

Center for Climate Change and Sustainable Energy Policy

CENTRAL EUROPEAN UNIVERSITY

Buildings sector: regional importance In 2030: the share of building-related emissions in global will stay at

In 2030: the share of building-related emissions in global will stay at approximately 1/3 of energy-related CO2

CO2 emissions including through the use of electricity, A1B scenario

How far can buildings take us? Recent research advances

Few sectors can deliver the magnitude of emission reduction needed

know-how has recently developed that we can build and retrofit buildings to achieve 60 – 90% savings as compared to standard practice in all climate zones (providing similar or increased service levels)

EDuraci sportebile Construction ("PassivHaus")

250

150

100

50

0

Stávající zástavba

<mark>ہ</mark> 200

celková energie [kWh/m

- 90%

Pasivní dům

Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz

Few sectors can deliver the magnitude of emission reduction needed

- know-how has recently developed that we can build and retrofit buildings to achieve 60 – 90% savings as compared to standard practice in all climate zones (providing similar or increased service levels)
- Novel methods developed for mitigation potential assessment that considers buildings as complex systems rather than independent sums of components
- New scenarios are constructed under the Global Energy Assessment, with co-funding from UNEP SBCI, that reflect this new approach

Opportunity or risk?

CENTRAL EUROPEAN UNIVERSITY

a world in which alobal afforts to combat.

The size of the potential lock-in effect

The lock-in effect, case study Heating energy use in Hungarian public buildings

Source: Katarina Korytarova, draft dissertation, 2009

Perhaps the largest co-benefits among mitigation options selected highlights

(local) job creation: Danish study finds twice higher employment intensity than for other mitigation options

- Health: up to 2 million die due to poor indoor air quality
- Health: better buildings reduce flu by up to 20%, resulting in EUR 10 bln/yr savings in US alone

"From today, each new building constructed in an energywasting manner or retrofited to a suboptimal level will lock us into a high climatefootprint future"

Thank you for your attention

Center for Climate Change and Sustainable Energy Policy

CENTRAL EUROPEAN UNIVERSITY

2 world in which alobal afforts to combat

12-21-07 - AR BAUDELING HENRICH. INVERTIG ADD SUPPORT

Diana Ürge-Vorsatz Diana

Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU http://3csep.ceu.hu www.globalenergyassessment.org Email: vorsatzd@ceu.hu

Supplementary slides

Center for Climate Change and Sustainable Energy Policy

CENTRAL EUROPEAN UNIVERSITY

a world in which alobal afforts to combat.

Az üvegházhatású gázok mérséklésének 2030-ra becsült szektoronkénti potenciálja különböző _{Gton CO2eq.} költségkategóriákban, átmeneti gazdaságokban

Quantified non-energy benefits of building energy-efficiency programs (1/5)

4							
Co-benefits	Country/ region	Methodology	Impact of CO ₂ emission reduction	References			
			Physical indicator	Monetary indicator	Norei en ces		
Quantifiable health effe	Quantifiable health effects						
Morbidity reduction	USA, New Zealand, Denmark	 A double-blind, multiple crossover intervention Initial self-completed background questionnaires; then shorter weekly questionnaires assessing the outcomes Environmental measurements Statistical analysis Cost-benefit analysis Literature review Authors' adjustment/estimates 	USA: A drop of concentration of the smallest airborne particles by 94% resulted a decrease of confusion scale by 3.7%, fatigue scale by 2.5% the feeling of "stuffy" air 5.3%, of "too humid" by 7.0%, of "too cold" by 5.5% and "too warm" by 3.5%. USA: Cooler temperatures within the recommended comfort range resulted in a decrease of the chest tightness by 23.4% per each 1°C decrease. Denmark: Better thermal air quality led to better concentration of 15% of respondents and a 34% decrease "sick building syndrome*" cases.	USA: Improved ventilation may result in net savings of EUR 302/employee-yr. that on a national scale represents productivity gain of EUR 17 billion/yr. USA: NPV** over the lifetime of improved ventilation can reach as hight as EUR 1,652/bh USA: Better ventilation and indoor air quality reduce influenza and cold by 9-20% (ca 16-37 million cases) that translates into savings of EUR 4.5-10.6 billion/yr. New Zealand: Health benefits due to a weatherization program amount to EUR 35/hh-yr. or 18.5% of the total annual energy savings of a household.	Mendell et al. 2002; Milton et al. 2000; Schweitzer and Tonn 2002; Wyon 1994; Stoecklein and Scumatz 2007; Fisk 1999; Fisk 2000a		
Mortality reduction	Hungary; USA, Ireland, Norway	 Bottom-up study (with Monte Carlo simulation) Statistic time-series analysis: semi-parametric log- linear model, a weighted 2- stage regression Analysis of mortality statistics with a population of a similar country as the control group 	USA: Every 10 g/m ³ increase in ambient particulate matter (the day before deaths occur) brings a 0.5% increase in the overall mortality. Ireland, Norway: The share of excess winter mortality attributable to poor thermal housing standards is 50% for cardiovascular disease and 57% for respiratory disease.	Hungary: Energy saving program resulted in the total health benefit of EUR 489 million/yr. due to a decrease of chronic respiratory diseases and premature mortality. Ireland, Norway: A total mortality benefit of a hypothetical thermal-improving program is EUR 1.5 billion (undiscounted) for a study in the left column.	Aunan et al. 2000; Samet et al. 2000; Clinch and Healy 1999		

Quantified non-energy benefits of building energy-efficiency programs (2/5)

Co-benefits	Country/	Methodology	Impact of CO ₂ emission reduction				
	region		Physical indicator	Monetary indicator	References		
Environmental (ecological) co-benefits							
General environmental benefits	New Zealand	 Direct computation Willingness to pay/to accept, contingent valuation, other survey-based methods 	NZ: Benefits to the environment gained after the weatherization program amount to EUR 44/hhyr. in 2007 that accounts for around 18.7% of the total annual energy expenditures saved		Stoecklein and Scumatz 2007		
Cleaner indoor air	USA	 Literature review Data analysis 	 US: A sample considered a reduction of concentration of the smallest airborne particles by 94% US: The reduction in the emission/yr. of a green school as compared to the average practice: 1,200 pounds of NOx - a principal component of smog 1,300 pounds of SO2 - a principal cause of acid rain 585,000 pounds of CO2 - GHG and the principal product of combustion 150 pounds of coarse particulate matter (PM10) – a principal cause of respiratory illness and an important contributor to smog. 		Mendell et al. 2002; Kats 2005		
Fish impingement	USA	Literature review Authors' adjustment/estimates	USA: NPV of reduction in fish impingement over the 17.6/hh.	Schweitzer and Tonn 2002.			
Waste water and sewage	USA	Literature review Authors' adjustment/estimates	USA: NPV of reduction in waste water and sewage over the lifetime of weatherization measures is EUR $2.6 - 495.3$ /hh.		Schweitzer and Tonn 2002		
Construction and demolition waste benefits	USA	 Statistical analysis NPV analysis with a 7% DR over 20 years 	USA: Construction and demolition diversion rates are 50-75% lower in green buildings (with the maximum of 99% in some projects) as compared to an average practice USA: A sample of 21 green buildings submitted for certification, 81% of such buildings reduced construction waste by at lease 50%, 38% of such buildings reduced construction waste by 75% or more		SBTF 2001; Kats 2005		
Reduction in air pollution (indoor + outdoor)	USA	 Literature review Authors' adjustment/estimates Statistical analysis 	USA: A green school emits 544 kg of NO _x , 590 kg of SO ₂ , 265 tonnes of CO ₂ , 68 kg of coarse particulate matter (PM10) less in comparison with the average practice	USA: The study in the left column results in NPV EUR 0.4/ft ² (~EUR 0.037/m ²) over 20 yr. USA: NPV of air emission reduction (CO ₂ , SO _x , NO _x , CO, CH ₄ , PM) over lifetime of the measures is (all in thousand EUR/hh.: a) from natural gas burning 30.2 - 37.7; b) from electricity consumption EUR 118-185; c) air emissions of heavy metals is 0.75-12.8	Schweitzer and Tonn 2002; Kats 2005; Kats 2006		
				3CSED			

JUJEP

			non-energy		
buil		ng energ	y-efficiency	programs (3/	5)
Co-benefits	Country/	Methodology	Impact of CO ₂ emission reduction		References
Francois as bouefits as	region	- fin an eint immente	Physical indicator	Monetary indicator	
Economic co-benefits a	nd ancillary	rinanciai impacts			
Indirect secondary impact from reduced overall market demand and resulting lower energy prices market- wide	USA	 NPV analysis with a 7% DR over 20 years Literature review Simplified quantification of the effect of renewable energy/energy efficiency on gas prices and bills Using a range of plausible inverse elasticity estimates 	USA: Efficiency-driven reductions in demand result 100% to 200% of direct energy savings; assuming from an efficient school design, the impact of indire schools has NPV EUR 0.21/m ² USA: 1% decrease of the national natural gas dem energy measures leads to a long-term wellhead po- savings from this price decrease amounted to 90% million for all customers (cumulative 5-year impact USA: 1% reduction in natural gas demand result in prices.	ect energy cost reduction for new and retrofitted nand through energy efficiency and renewable rice reduction of 0.8% - 2%; the indirect monetary 6 of the direct monetary savings that it EUR 14.6 t, 1998-2002, over June-September peak hours)	Kats 2006; Wiser et al. 2005; O'Connor 2004; Platts Research &Consulting 2004
Enhanced learning in 'greened' buildings	USA	Review of the financial benefits of education	Better environmental condition lead to enhanced le and test scores is equivalent to a 1.4% lifetime and from 50% to 84% is associated with a 12% increase	nual earnings increase; an increase in test scores	Hanushek 2005
Employees' retention: avoided reduced- activity days	USA, The State of Washin gton, Ireland	 Statistical analysis Literature review Bottom-up model NPV analysis with a 7% DR over 20 years A walk-through assessment of schools Survey 	USA: The improved quality of schools increases teacher retention by 3% USA/The State of Washington: "Greening" schools could bring 5%/yr. of improvement in teacher retention	USA : if the cost of teacher loss is 50% of salary, the left column tops study equals to a saving of EUR 0.28/m² if ~214 m²/teacher is assumed USA/The State of Washington (left column): Savings of USD 160 thousand/yr. during 20 years (not discounted) Ireland: The annual value of the morbidity benefits of the energy efficiency program is EUR 58 million excl. reduced-activity days and EUR 66.6 million incl. them	Buckley et al. 2005; Kats 2005; Paladino & Company 2005; Clinch and Healy 2001
Improved productivity	USA	 Case studies on documented productivity gains Empirical measurements Computer-based literature searches, reviews of conference proceedings, and discussions with researchers Multivariate linear regression 	USA: In well day-lighted buildings: labor productivity rises by about 6–16%, students' test scores shows ~20–26% faster learning, retail sales rise 40%. USA: Students with the most day-lighting show 20% - 26% better results than those with the least day-lighting USA: The ventilation rates less than 100%	USA: The productivity can improve by 7.1%, 1.8%, and 1.2% with lighting, ventilation, and thermal control by a tenant; an average workforce productivity increase is 0.5% - 34%/each control type. A 1% increase in productivity (~ ca 5 minutes/day) is equal to EUR 452 – 528/employee-yr. or EUR 0.21/m ² - yr.; a 1.5 % increase in productivity (~ ca 7	Lovins 2005; Fisk 2000a; Fisk 2000b; Heschong Mahone Group 1999; Federspiel 2002; Menzies

Quantified non-energy benefits of building energy-efficiency programs (4/5)

Co-benefits	Country/ region	Methodology	Impact of CO ₂ emission reduction	References	
			Physical indicator	Monetary indicator	References
		analysis of student perfromance data • Log-linear regression model • Statistical analysis • Questionnaire • NPV analysis with a 7% DR over 20 years	outdoor air and temperature higher than 25.4°C result in lower work performance Canada: A new ventilation system improved the productivity of co-workers by 11% versus reduced productivity by 4% in a control group USA: After building retrofitting, absenteeism rates dropped by 40% and productivity increased by more than 5%; after moving to a retrofitted facility two business units monitored 83% and 57% reductions in voluntary terminations versus a c control group with 11% reduction in voluntary termination of employment	minutes/day) is equal to ~EUR 754/employee- yr. or EUR 0.35/m ² -yr. USA: More comfortable temperature and lighting results in productivity increase by 0.5% - 5%; considering only U.S. office workers, such a change translates into an annual productivity increase of roughly EUR 15 – 121 billion.	1997; Kats 2003; Pape 1998; Shades of Green 2002
Avoided unemployment	USA	 Literature review Authors' adjustment and calculations 	NPV of avoided unemployment over the lifetime of	weatherization measures is EUR 0 – 137.9/hh.	Schweitzer and Tonn 2002
Lower bad debt write- off	USA	 Literature review Authors' adjustment/estimates 	NPV of lower bad debt write-off over the lifetime of /hh.	Schweitzer and Tonn 2002	
Employment creation	USA	 NPV analysis with a 7% DR over 20 years Literature review Authors' adjustment/estimates Statistical assessment of the 5- year the energy efficiency programs 	USA: Green schools create more jobs than conventional schools: the long-term employment impact of increased energy efficiency may provide EUR 0.21/m ² of benefits USA: NPV of direct and indirect employment creation over the lifetime of the measures is EUR 86.7 – 3.2 thousand/hh. (note: this benefit occurs only one time in year weatherization is performed) USA: Energy efficiency investment of EUR 85.2 million in the Massachusetts economy in 2002 created 1780 new short-term jobs; in addition, lowered energy bills for participants and for Massachusetts resulted in additional spending, creating 315 new long-term jobs; energy efficiency jobs added EUR 104.8 million to the gross state product, including EUR 48.2 million in disposable income (in 2002 in Massachusetts)		Kats 2005; Schweitzer and Tonn 2002; O'Connor 2004; Kats 2005
Rate subsidies avoided	USA	Literature review Authors' adjustment/estimates	NPV of avoided rate-subsidies over the lifetime of weatherization measures is EUR 4.5 – 52.8 /hh.		
National energy security	USA	 Literature review Authors' adjustment/estimates 	NPV of enhanced national energy security over the lifetime of weatherization measures is EUR 56.5 $-2,488$ /hh.		

Quantified non-energy benefits of building energy-efficiency programs (5/5)

Co-benefits	Country/ region	Methodology	Impact of CO ₂ emission reduction	References		
			Physical indicator	Monetary indicator	References	
Service provision benefits						
Transmission and distribution loss reduction	USA	Literature review Authors' adjustment/estimates	USA: NPV over the lifetime of weatherization	JSA: NPV over the lifetime of weatherization measures installed ranges EUR 24.9 – 60.3/hh.		
Fewer emergency gas service calls	USA	 Literature review Authors' adjustment/estimates 	USA: NPV of fewer emergency gas service c 29.4 – 151.5/hh.	USA: NPV of fewer emergency gas service calls over the lifetime of weatherization measures is EUR 29.4 – 151.5/hh.		
Utilities' insurance savings	USA	 Literature review Authors' adjustment/estimates 	USA: NPV of utilities insurance cost reduction over the lifetime of weatherization measures is EUR 0 – 1.5/hh.		Schweitzer and Tonn 2002	
Decreased number of bill-related calls	New Zealand	 Direct computation Willingness to pay, willingness to accept, contingent valuation and other survey- based methods 	Bill-related calls became less frequent after th amounted savings of NZ\$30 (~EUR 15.9/hh-	Stoecklein and Scumatz 2007		
Social co-benefits						
Improved social welfare and poverty alleviation	UK	Survey monitoring the impact of energy company schemes which were set up to fuel poverty	UK: Energy efficiency schemes applied to 6 million households in January-December 2003 resulted in the average benefit of EUR 12.7/hh-yr.		DEFRA 2005	
Safety increase: fewer fires	USA	 Literature review Authors' adjustment/estimates 	USA: NPV over the lifetime of the measures installed is EUR 0 - 418 /hh.		Schweitzer and Tonn 2002	
Increased comfort	Ireland; New Zealand	 A computer-simulation energy-assessment model Direct computation Willingness to pay, willingness to accept, contingent valuation and other survey- based methods 	Ireland: A household temperature once the energy efficiency program has been completed increased from 14 to 17.7 °C. The analysis showed that comfort benefits peak at year 7 and then decline gradually until year 20.	Ireland: The total comfort benefits of the program for households (described in the left column) amount to EUR 473 million discounted at 5% over 20 years; New Zealand: Comfort (incl. noise reduction) benefits after the weatherization program estimated as EUR 103/hhyr. that is 43% of the saved energy costs	Clinch and Healy 2003; Stoecklein and Scumatz 2007.	

Example of savings by reconstruction

Before reconstruction

Reconstruction according to the passive house principle

15 kWh/(m²a

over 150 kWh/(m²a)

Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz, EEBW2006

What is a sustainable level of retrofit?

Ecofys (Hermelink:

How deep to go?) 2009 finds:

3CSEP

For new buildings a primary energy level of appr. 140 kWh/m2a for space heat, DHW, household electricity and embodied energy,

 \Box ~ the primary energy requirement for passive houses.

From an energy life-cycle perspective [Hermelink 2006] analyses which renovation level should be achieved in order to be better than a rebuild option. He concludes that "taking sustainability seriously, a space heat consumption between 25 and 40 kWh/m2a should be aimed at" in renovation.

✤ = savings of 80% - 90%.

Characteristics of stabilisation scenarios and the emission reduction needs

Category	Radiative forcing (W/m²)	CO ₂ concentration ^{c)} (ppm)	CO ₂ -eq concentration ^{c)} (ppm)	Global mean temperature increase above pre- industrial at equilibrium, using "best estimate" climate sensitivity ^{b), c)} (°C)	Peaking year for CO ₂ emissions ^{d)}	Change in global CO ₂ emissions in 2050 (% of 2000 emissions) ^d)
I	2.5-3.0	350-400	445-490	2.0-2.4	2000-2015	-85 to -50
II	3.0-3.5	400-440	490-535	2.4-2.8	2000-2020	-60 to -30
Ш	3.5-4.0	440-485	535-590	2.8-3.2	2010-2030	-30 to +5
IV	4.0-5.0	485-570	590-710	3.2-4.0	2020-2060	+10 to +60
v	5.0-6.0	570-660	710-855	4.0-4.9	2050-2080	+25 to +85
VI	6.0-7.5	660-790	855-1130	4.9-6.1	2060-2090	+90 to +140
						Total

Source: IPCC AR4, WGIII, Table SPM5

Frankfurt/M Germany Sophienhof FAAG/ABG Frankfurt Architect Fuessler

Blocks of Flats

160 dwellings 14 767 m² Passive House Technology 15 kwh / m² per year

Extra costs = 3-5% of the total costs Payback = 9 - 10 years <u>3CSEP</u> OECD/IEA, 2009

Energy Efficiency Policy

Can we afford this ?

Source: Jens Lausten, IEA

© OECD/IEA, 2008

W. I. N.

The climate change mitigation challenge

"HOW ON EARTH DO WE TURN IT OFF?"

caglecartoons.com

The later emissions peak, the more ambitious reductions needed

Building sector: global importance

In 2004, in buildings were responsible for app. 1/3 of global energy-related CO_2 (incl. indirect) and 2/3 of halocarbon emissions

The Global Energy Assessment: GEA Background and purpose

- The Global Energy Assessment aims at providing (a) blueprint(s) for the world how energy-related social, environmental, geopolitical and other challenges can be addressed this century
- We all know that buildings are the key pillar to such a future, but how much?
- GEA constructs new scenarios (complementing IPCCtype scenarios) that attempt to take advantage of the really large and novel opportunities in buildings, hard-tomodel by existing modeling frameworks
- UNEP SBCI is a partner to further GEA efforts in the buildings scenarios (and WB is partner in GEA)

Main philosophy and assumptions

- Assumes that the world's building stock will transform over to today's known (and built) cutting edge in architecture
 - At the most affordable cost
 - At the natural rate of building construction and retrofit
 - Taking into account capacity and other limitations, but assuming ambitious and supportive (not financially but legally) policy environment.
- The main pillars of the model are existing best practices
 - Best practice from and energy and INVESTMENT COST perspective as well
- The world's building stock is broken down by regions, climate zones and 3 building types
- Model eradicates energy poverty well before 2050, i.e. everyone has appropriate thermal comfort energy services by 2050
- several scenarios planned:
 - Very high efficiency with different modalities; +building-integrated renewables; +behavioural change

3CSFP

- Buildings are key to climate change mitigation in each world region
- Substantial opportunities exist; as much as 77% of 2005 final thermal energy consumption can be eliminated by 2050 by building codes, while living standards increase as BAU and energy poverty eliminated
- To reach ambitious values:
 - Building codes need to be universal and fully implemented
 - Most advanced (low-cost) know-how needs to be mandated
 - Construction industry needs to gear up soon (in app. a decade)
 - Codes need to cover major retrofit as well, not only newbuild
 - 2050 emissions extremely sensitive to retrofit rate: 77% energy savings for 3% retrofit rate drops to 37% for 1.4% rate!!
- Major lock-in risks exist
 - Suboptimal retrofit represents major climate lock-in risk
 - Present trends can lock in 23% 35% of all 2005 emissions (increasing achievable low levels by 37 152%) for many decades
- Suboptimal retrofits should not be supported; rather wait if complex, deep retrofit is not possible yet

Panelfelújítási programban részt vevő épületek fűtési fajlagos hőfelhasználásának alakulása Székesfehérvár

H: Homlokzati hőszigetelés

H: NY. Homlokzati hőszigetelés, nyílászáró csere

H: NY. F. Homlokzati hőszigetelés, nyílászáró csere, fűtéskorszerűsítés,

3 éves átlag korrigált fajlagos

2007/2008. évi korrigált fajlagos

Source: Pájer Sándor, SZÉPHŐ Zrt., KLÍMAVÁLTOZÁS - ENERGIATUDATOSSÁG – ENERGIAHATÉKONYSÁG. V. Nemzetközi Konferencia, SZEGED, 2009. április 16-17.

"EU buildings – a goldmine for CO2 reductions, energy security, job creation and addressing low income population problems"

Source: Claude Turmes (MEP), Amsterdam Forum, 2006 More on Solanova: www.solanova.eu

Estimated potential for GHG mitigation at a sectoral level in 2030 in different cost categories, transition Gton CO2eq. economies

Estimated potential for GHG mitigation at a sectoral level in 2030 in different cost categories in developing countries

Constructed based on Chapter 11 results