Climate change and the role of buildings and solar thermal use to minimize its impacts

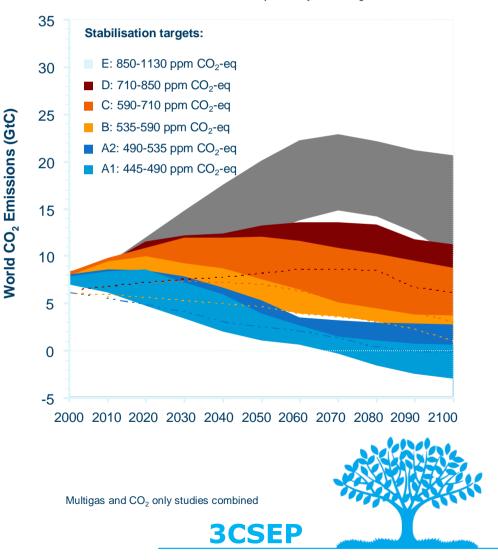
RADER

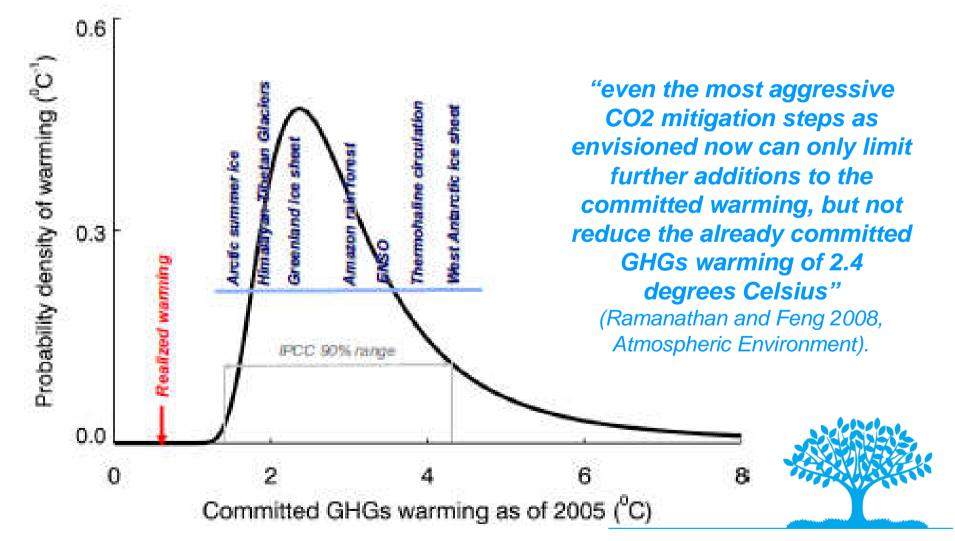
Diana Ürge-Vorsatz Director, 3CSEP, GEU UNIVERSITAS FUEPHIAESIAL Global Energy Assessment Eurosun 2010 Sep 29, 2010, Gan

Introduction: the climate change challenge

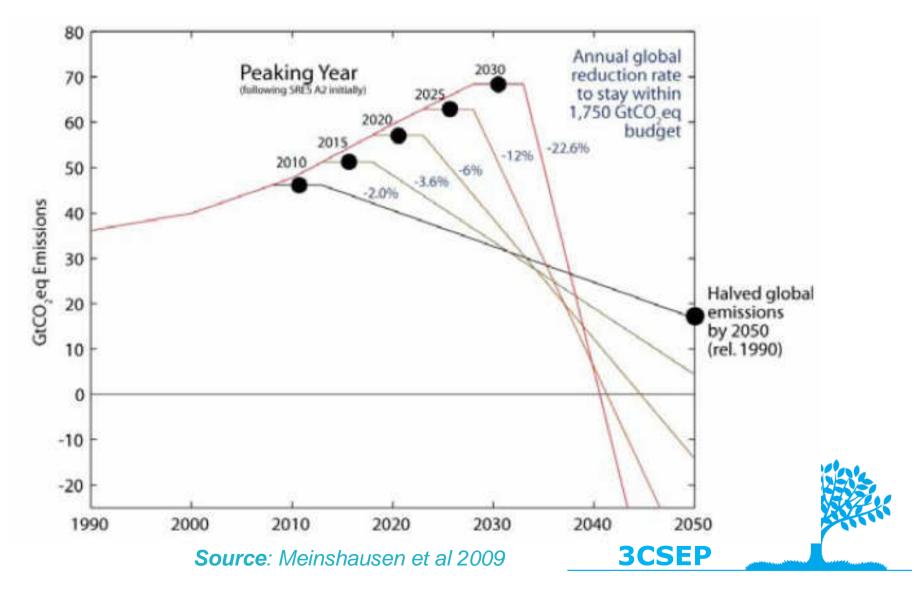
Overview

- The role of solar thermal energy in fighting CC
- How far can buildings and (solar) thermal energy take us in mitigating CC?
- the risk of the lock-in effect
- Summary

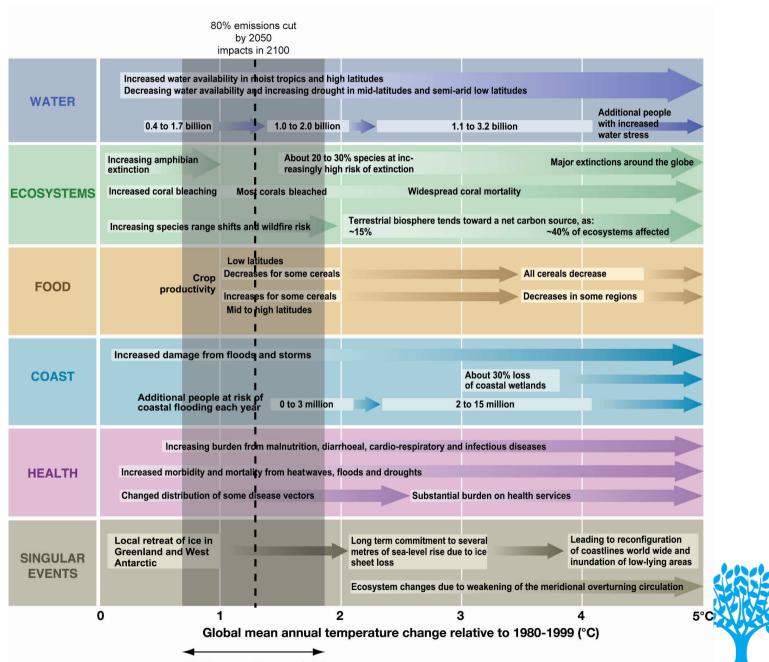

The climate change challenge

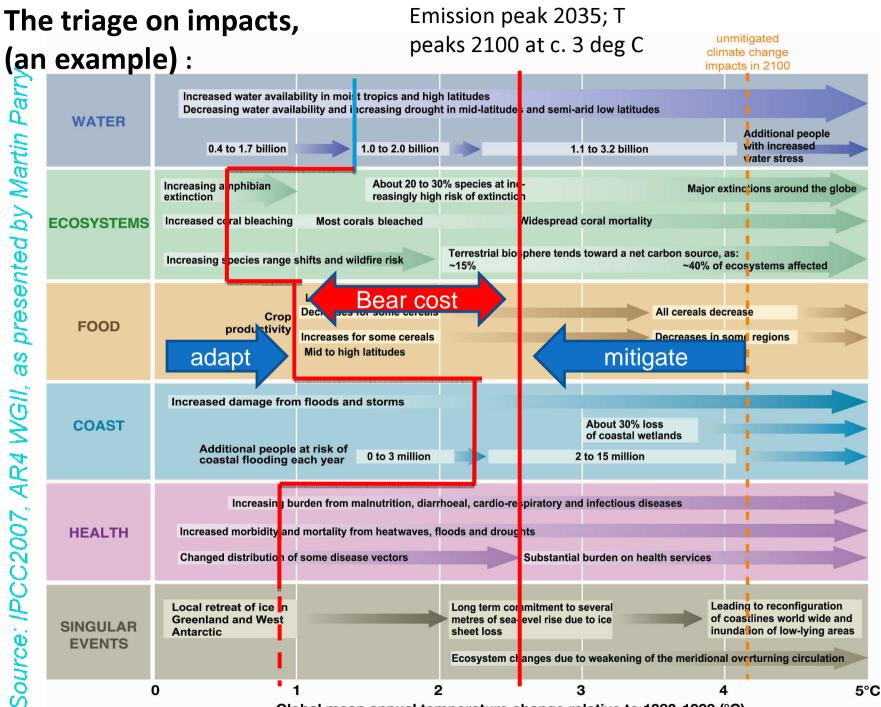

In order to limit the impacts of CC, GHG emissions have to be reduced significantly

- Stabilizing global mean temperature requires a stabilization of GHG concentrations in the atmosphere -> GHG emissions would need to peak and decline thereafter (SPM 18 WG III)
- The lower the target stabilisation level limit, the earlier global emissions have to peak.
- Limiting increase to 3.2 4℃ requires emissions to peak within the next 55 years.
- Limiting increase to 2.8 3.2℃ requires global emissions to peak within 25 years.
- Limiting global mean temperature increases to 2 – 2.4℃ above preindustrial levels requires global emissions to peak within 15 years and then fall to about 50 to 85% of current levels by 2050.


Based on SPM 7, WG III. Emission pathways to mitigation scenarios

Probability distribution for the committed warming by GHGs between 1750 and 2005. Shown are climate tipping elements and the temperature threshold range.


The later emissions peak, the more ambitious reductions needed


Y					stabn at 2015 levels impacts in 2100	unmitigated climate change impacts in 2100
Pan	WATER		ility in moist tropics and higl bility and increasing drough		arid low latitudes	
Source: IPCC2007, AR4 WGII, as presented by Martin Parry	ECOSYSTEMS	0.4 to 1.7 billion	1.0 to 2.0 billion	•	I.1 to 3.2 billion	Additional people with increased vater stress
		Increasing amphibian extinction		% species at inc- risk of extinction		Major extinctions around the globe
		Increased coral bleaching	Most corals bleached	Widespread	d coral mo <mark>r</mark> tality	
		Increasing species range s	hifts and wildfire risk	Terrestrial biosphere tend ~15%		source, as: ~40% of ecosystems affected
as prese	FOOD	productivity	Low latitudes Decreases for some cereals Increases for some cereals Mid to high latitudes			eases in some regions
R4 WGII,	COAST	Increased damage from Additional people coastal flooding ea	at risk of		About 30% loss of coastal wetlands 2 to 15 million	
C2007, AI	HEALTH		rden from malnutrition, diarr mortality from heatwaves, fl some disease vectors	oods and droughts	nd infectious diseases al burden on health se	
urce: IPC	SINGULAR EVENTS	Local retreat of ice in Greenland and West Antarctic		Long term commitment to metres of sea-level rise du sheet loss Ecosystem changes due	ue to ice	Leading to reconfiguration of coastlines world wide and inundation of low-lying areas neridional overturning circulation
Sc		0 1	2		3	4 5°
-		Glo	bal mean annual ten	nperature change r	elative to 1980-	1999 (°C)

Global mean annual temperature change relative to 1980-1999 (°C)

	80% emissions (by 2050 impacts in 210	cut 50% emissions cut by 2050 0 impacts in 2100	20% emissions cut by 2050 impacts in 2100	stabn at 2015 levels impacts in 2100	unmitigated climate change impacts in 2100			
	Increased water availability in rhoist tropics and high latitudes Decreasing water availability and increasing drought in mid-latitudes and semi-arid low latitudes							
WATER	0.4 to 1.7 billion	1.0 to 2.0 billion		1.1 to 3.2 billion	Additional people with increased vater stress			
2	Increasing amphibian extinction		% species at inc- risk of extinction		Major extinctions around the	globe		
ECOSYSTEMS	Increased coral bleaching	Most corals bleached	Widespre	ead coral mortality				
	Increasing species range shifts	s and wildfire risk	Terrestrial biosphere te ~15%	nds toward a net carbon	source, as: ~40% of ecosystems affected			
FOOD	Crop Dec	w latitudes reases for some cereals reases for some pereals			reals decrease ases in some regions			
		to high latitudes						
	TIEIO							
COAST	Increased damage from flo Additional people at ri coastal flooding each	I I I I isk pf		About 30% loss of coasial wetlands 2 to 15 million				
		1 I I I	hoeal, cardio-respiratory	and infectious diseases				
HEALTH	Increased morbidity and mo			tial burden on health ser	vices			
SINGULAR	Local retreat of ice in Greenland and West Antarctic		Long term commitment metres of sea-level rise sheet loss		Leading to reconfigurati of coastlines world wide inundation of low-lying	and		
EVENTS			Ecosystem changes du	ue to weakening of the m	eridional overturning circulat	ion		
() 1	2	-	3	4	5 °		
	Globa	l mean annual ter	nperature change	relative to 1980-	1999 (°C)			

5-95th percentile uncertainty range

Global mean annual temperature change relative to 1980-1999 (°C)

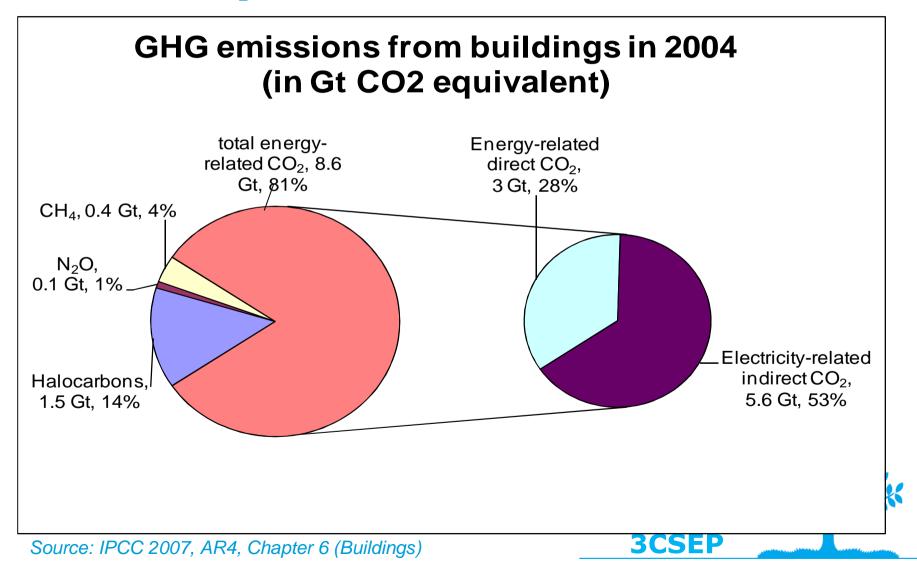
The role of solar thermal and the buildings sector in reducing CC impacts

The Role of Solar Energy in our global fight against climate change

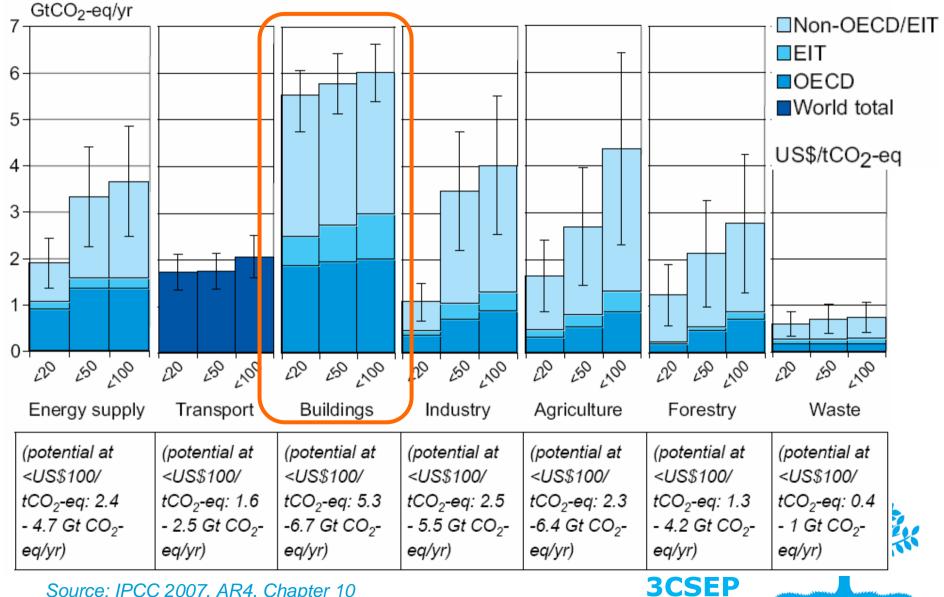
Mitigation:

- Solar technology's fuel source is unlimited and can provide energy at a significant scale
- Thermal energy needs are often the "Cinderella" of mitigation focus is mainly on electricity, while its potential maybe multiple of RES power
- Adaptation: solar cooling; avoiding/managing solar gains; in urban areas: replacing the need for energy "imports" therefore reducing *local warming*

Technology Transfer: Solar provides the opportunity for developing countries to leapfrog traditional energy dependence on fossil fuels to producing clean energy


Finance: Solar technology is becoming more affordable in every nation; it creates jobs, reduces fuel and energy poverty.

3CSEP


Adapted from: Solar Trade Associations.2009. SEIZING THE SOLAR SOLUTION : Combating Climate Change through Accelerated Deployment

Building sector: global importance

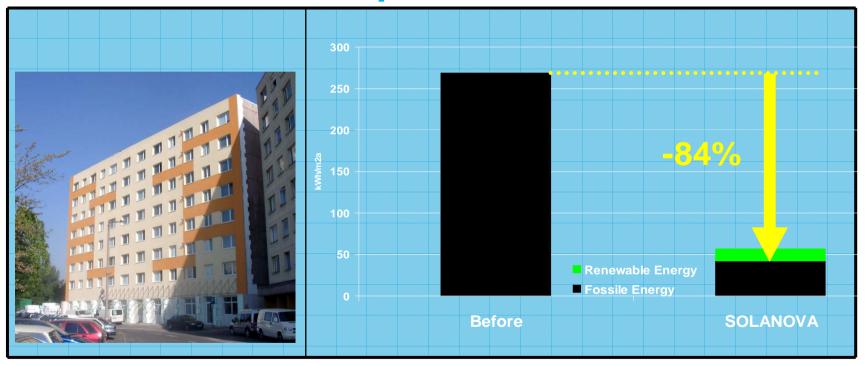
In 2004, in buildings were responsible for app. 1/3 of global energyrelated CO_2 (incl. indirect) and 2/3 of halocarbon emissions

The buildings sector offers the largest lowcost potential in all world regions by 2030

Source: IPCC 2007, AR4, Chapter 10

Few sectors can deliver the magnitude of emission reduction needed

know-how has recently developed that we can build and retrofit buildings to achieve 60 – 90% thermal energy savings as compared to standard practice in all climate zones (providing similar or increased service levels)



Photos from Gunter Lang

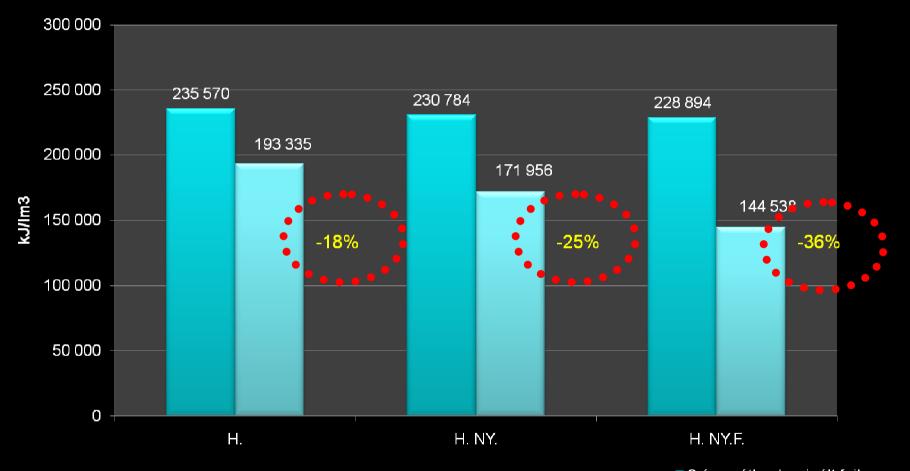
Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz

"EU buildings – a goldmine for CO2 reductions, energy security, job creation and addressing low income population problems"

Source: Claude Turmes (MEP), Amsterdam Forum, 2006 More on Solanova: www.solanova.eu

State-of-the-Art Scenario Results for the World Energy Floor Area

Source: <u>www.globalenergyassessment.org</u> (to come)



Opportunity or risk?

The size of the potential lock-in effect

Panelfelújítási programban részt vevő épületek fűtési fajlagos hőfelhasználásának alakulása (Hungiarian city)

H: Homlokzati hőszigetelés

H: NY. Homlokzati hőszigetelés, nyílászáró csere

H: NY. F. Homlokzati hőszigetelés, nyílászáró csere, fűtéskorszerűsítés

3 éves átlag korrigált fajlagos

2007/2008. évi korrigált fajlagos

Széphő Zrt.

Source: Pájer Sándor, SZÉPHŐ Zrt., KLÍMAVÁLTOZÁS - ENERGIATUDATOSSÁG – ENERGIAHATÉKONYSÁG. V. Nemzetközi Konferencia, SZEGED, 2009. április 16-17.

The risk of the lock-in effect

Final thermal energy consumption Worldwide State-of-the-art vs. suboptimal renovation scenarios

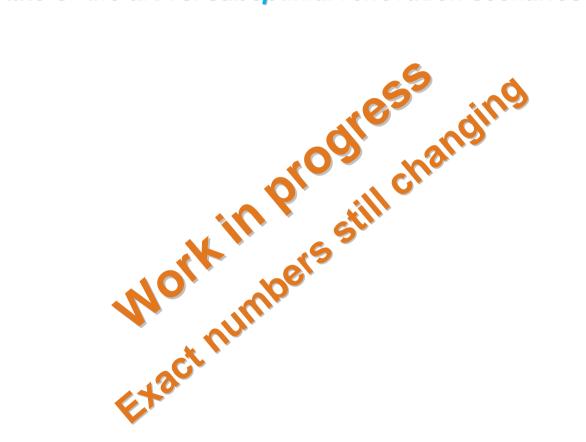
The risk of the lock-in effect

Final thermal energy consumption in Western Europe State-of-the-art vs. suboptimal renovation scenarios

Source: <u>www.globalenergyassessment.org</u> (to come)

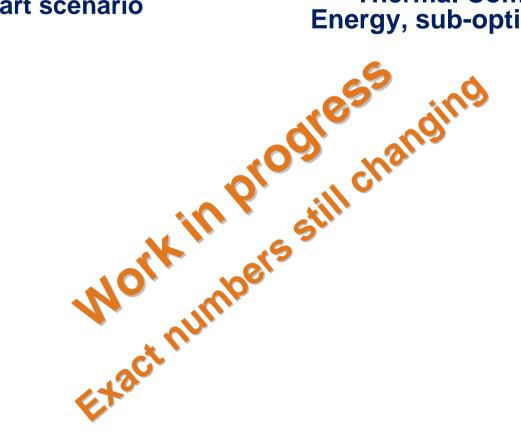
The lock-in effect in detail for Western Europe

Thermal Comfort Final Energy, state-of-the-art scenario Thermal Comfort Final Energy, suboptimal scenario



The risk of the lock-in effect

Final thermal energy consumption in Eastern Europe State-of-the-art vs. suboptimal renovation scenarios



The lock-in effect in detail for Eastern Europe

Thermal Comfort Final Energy, state-of-the-art scenario

Thermal Comfort Final Energy, sub-optimal scenario

Source: <u>www.globalenergyassessment.org</u> (to come)

Conclusions

- The challenge of fighting climate change is Herculean but it is possible to solve.
- Mitigation needs to go hand-in-hand with adaptation: synergies!
 - Solar thermal has important role in both areas
- Buildings are key to climate change mitigation in each world region
- Substantial opportunities exist; as much as 42% of 2005 final thermal energy consumption can be eliminated by 2050 by state-ofthe-art architecture and solar thermal technologies, while living standards increase and energy poverty eliminated
- However, major lock-in risks exist
 - Suboptimal retrofit and cherry-picking represents major climate lock-in risk
 - Present policies can lock in 43% 78% of all 2005 building thermal energy-related emissions in Europe for many decades
 - □ We need to stop cherry-picking and focus on strategic, holistic solutions
- We need to make solar thermal solutions more "sexy" and the benefits more quantifiable

3CSEP

Thank you for your attention

CENTRAL EUROPEAN UNIVERSITY

IT ST. OT THE BRANCHING DENSITY. DOWNER ADD ANT COM.

Diana Ürge-Vorsatz Diana

Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU <u>http://3csep.ceu.hu</u> <u>www.globalenergyassessment.org</u> <u>Email: vorsatzd@ceu.hu</u>