Beyond the business case: buildings for the climate – a global perspective

CENTRAL EUROPEAN UNIVERSITY

Diana Ürge-Vorsatz

Overview

- Introduction: the CC challenge
- The global and regional importance of green buildings in tackling CC
- Co-benefits: the free lunch we are paid to eat
- But who will pay the cover charge?
- The role of GBCs in unlocking the opportunities and recommendations

The climate change challenge

"HOW ON EARTH DO WE TURN IT OFF?"

In order to limit the impacts of CC, GHG emissions have to be reduced significantly

- Stabilizing global mean temperature requires a stabilization of GHG concentrations in the atmosphere -> GHG emissions would need to peak and decline thereafter (SPM 18 WG III)
- The lower the target stabilisation level limit, the earlier global emissions have to peak.
- Limiting increase to 3.2 4°C requires emissions to peak within the next 55 years.
- Limiting increase to 2.8 3.2°C requires global emissions to peak within 25 years.
- Limiting global mean temperature increases to 2 – 2.4°C above preindustrial levels requires global emissions to peak within 15 years and then fall to about 50 to 85% of current levels by 2050.

Based on SPM 7, WG III. Emission pathways to mitigation scenarios

The later emissions peak, the more ambitious reductions needed

Certain models forecast alarming summer warming in region: PRECIS scenario 2071–2100

The importance of energy performance of buildings on *local* warming: *new importance of low energy consumption buildings*

The role of green buildings in CC mitigation: global and regional importance

CENTRAL EUROPEAN UNIVERSITY

Perceptions from sector professionals

Source: WBCSD 2007: EEB Facts and Trends, 2007

Building sector: global importance

In 2004, in buildings were responsible for app. 1/3 of global energy-related CO_2 (incl. indirect) and 2/3 of halocarbon emissions

How much can green buildings help?

Few sectors can deliver the magnitude of emission reduction needed

know-how has recently developed that we can build and retrofit buildings to achieve 60 – 90% savings as compared to standard practice in all climate zones (providing similar or increased service levels)

Buildings utilising passive solar construction ("PassivHaus")

Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz

East European heating&cooling final energy and floor area, 2005 - 2056 **UNEP SBCI** Sustainable Buildings & Climate Initiative State-of-the-Art Scenar Floor Energy, TWh/ Area, 1E9 m^2 year 0.8 -6 0.7 5 0.6 4 •**60%** 0.5 0 2 3 0.3 2 Adv New Adv New New 0.2 New Adv Ret Adv Ret Retrofit 1 Retrofit Standard 0.1 Standard 0 0 2030 2025 2035 2005 2010 2040 2045 2050 930 7030 Year 2005 2010 2015 2020 2035 2040 2045 2050 **3CSEP**

Opportunity or risk?

The size of the potential lock-in effect

Development of specific heating energy consumption of buildings participating in the Panel Program, Hungary (case study, City A)

H: Homlokzati hőszigetelés

H: NY. Homlokzati hőszigetelés, nyílászáró csere

H: NY. F. Homlokzati hőszigetelés, nyílászáró csere, fűtéskorszerűsítés

3 éves átlag korrigált fajlagos

2007/2008. évi korrigált fajlagos

Széphő Zrt.

Source: Pájer Sándor, SZÉPHŐ Zrt., KLÍMAVÁLTOZÁS - ENERGIATUDATOSSÁG –ENERGIAHATÉKONYSÁG. V. Nemzetközi Konferencia, SZEGED, 2009. április 16-17.

Co-benefits - the free lunch we are paid to eat...

Co-benefits of energy-efficient buildings

Investment needs vs. energy cost savings, Hungarian tertiary sector

	Energy saving potential			CO ₂ reduction potential			Investment vs. savings	
	Business -as-usual in year 2030	Energy saving potenti al in year 2030	Energy saving potenti al in year 2030 (% of BAU)	Business -as-usual 2030	CO ₂ mitigatio n potential 2030	CO ₂ mitigatio n potential 2030 (% of BAU)	Total cumulativ e investmen t (2011- 2030)	Cumulativ e energy cost savings (2011- 2030)
	GWh	GWh	GWh	kt CO ₂	kt CO ₂	kt CO ₂	Billion Euro	Billion Euro
Suboptimal accelerated	7 633	1 667	22%	1 518	331	22%	1.82	0.97
Passive 1%	7 633	1 518	20%	1 518	302	20%	0.84	0.88
Passive accelerated	7 633	5 572	73%	1 518	1 108	73%	2.62	3.24

3CSEP

Source: Katarina Korytarova, dissertation draft

In most new MSs, EE is not primarily a green, but a social and economic agenda

ENERGIASZEGÉNYSÉG

MAGYARORSZÁGON

hajátváltozási és Fanntartható Energiapolitikai Központ (3058 Jájo-európai Egyetem (0EJ) yüttműhődésben a Kömyezeti Igazságosaág Munkacsoportta DEGYLET – Protect the Future

ELSŐ ÉRTÉKELÉS

Sergio Tirado Herrero

4

titu

Prof. Diana Ürge-Vorsatz

- According to a new study, app. 2500 lives are lost in Hungary alone each year
- By the UK definition, the average Hungarian household is fuel poor (has spent 10.4% of its disposable income on energy in 2007, it probably worsened since then)
- App. 1.5 million Hungarians declare that they cannot afford to keep their homes sufficiently heated
- A widespread deep (!) building energy retrofit program can eliminate fuel poverty

3CSFP

EE as an economic/social agenda: employment and other economic benefits

- □ labor **productivity** rises by app. 6–16%;
- students' test scores shows ~20–26% faster learning
- Influenza and cold rates can decrease by as much as 20%, resulting in a USD10 bln/yr savings in US alone
 - better indoor environments related with building EE save annually in the US \$6 -14 bill.(reduced respiratory disease); \$1 - 4 bill. (reduced allergies and asthma); \$10 - 30 bill. (reduced sick building syndrome); and \$20 - 160 bill. (direct improvements in worker performance unrelated to health)

3CSFP

- Employment: (local) job creation: Danish trade union study finds twice higher employment intensity than for other mitigation options
- a wide-scale renovation program can create app. 250,000 net jobs in Hu alone (vs. the "1 million" missing – as on political agendas)

Summary: all arguments are ready for a massive deep green building retrofit program

Annual investments in building retrofits in Hungary until 2050 :

Who could foot the bill

3CSFP

Significant EU funds available (structural and cohesion funds); up to 4% of national funds now available for buildings renovation – but short window of opportunity!

- Emission quota sales (GISs), ETS auctioning revenues, other climate revenues – buildings are one of the most effective ways to spend these
- Remaining funds: innovative financing schemes already operate in several countries (KFW model, ESCOs, etc.)

Distribution of Funding among Operational Programmes and among priorities within "Environment and Energy" Hungary

Transport

...vs. 4% of total that is available now for such purposes

conclusion:

Priorities for CEE Green buildings councils

- Many more CEE best practices needed to demonstrate that very high-performance green building is not expensive and can be cheaper than conventional – green construction should not stay as a luxury market but the mainstream
- Emphasis for next decades in CEE is on renovation rather than new construction from a climate and sustainable development perspective
- Due to the lock-in effect, it is essential to go for the complex, state-ofthe-art renovation (close to passive std), and not compromise at suboptimal solutions
- There is lots of financing available, but GBCs need to have a much stronger voice in letting their decision-makers/govts that this is high societal/economic priority and that the money IS spent on this

3CSFP

Adaptation/mitigation: heat-resilient buildings; preventing AC; integrating as much greenery in urban areas as possible; if not possible, apply light-colored, reflective roofs/insolated surfaces **Conclusion:** *the role of GBCs to unlock these opportunities – but not like this:*

Q. How many green building consultants does it take to change a light bulb?

None. Someone else did it. I was at a conference.

Thank you for your attention

Center for Climate Change and Sustainable Energy Policy

CENTRAL EUROPEAN UNIVERSITY

Trust me – they just keep promising this global warming; they just keep promising; but they won't keep this promise of theirs either...

<mark>hvg.hu</mark> hírek szünet nélkül

Diana Ürge-Vorsatz Diana

Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU <u>http://3csep.ceu.hu</u> <u>www.globalenergyassessment.org</u> <u>Email: vorsatzd@ceu.hu</u>