Investing in energy efficiency in buildings with district heating

CENTER FOR CLIMATE CHANGE

FUROPEAN UNIVERSITY

Cohesion Policy – Investing in energy efficiency in buildings Brussels. November 29-30, 2011

SERGIO TIRADO HERRERO DIANA URGE-VORSATZ

Central European University (CEU) Department of Environmental Sciences and Policy Center for Climate Change and Sustainable Energy Policy

Diverging perspectives in an evolving EU A CLEAN, EFFICIENT, CHEAP TECHNOLOGY

- Up-to-date heat production plants and distribution systems
 Concentration and repowebles
- Cogeneration and renewables (e.g., biomass)
- Lower costs per kWh
- Lower GHG emissions
- Low-carbon solution promoted in Member States with potential (e.g., UK)

CENTER FOR CLIMATE CHANGE

Spittelauer DH plant (Vienna) / Source: <u>www.hundertwasser.at</u>

Diverging perspectives in an evolving EU AN UNDESIRED LEGACY

- Less cogeneration, sometimes heat-only plants based on polluting fuels (e.g., coal, Poland)
- Obsolete distribution
 systems inefficient and
 building stock
- Inadequate metering
- Inflexible flat rates
- Cost burden

Diverging perspectives in an evolving EU AN INDUSTRY WITH AN UNCERTAIN FUTURE?

The paper

- Aim
 - Explore key issues for successful investments
 - Raise questions about the future of the DH sector
- Scope
 - Focus on residential buildings in Central and Eastern Europe (CEE); discussion relevant to other contexts
- Research questions
 - What cost burden imposes on consumers?
 - How deep to retrofit?
 - Reasons for public sector involvement?
 - Are technical solutions enough?
 - What is the future of DH in a low-energy buildings' EU?

A cost burden on consumers Per unit price of DH vs. other heat sources in Western Europe

GERMANY

Center for Climate Change and Sustainable Energy Policy

Source: Euroheat and Power (2011)

A cost burden on consumers Per unit price of DH vs. other heat sources in Western Europe

Figure 4: Energy Price Index Austria²

AUSTRIA

Entwicklung der Energiepreise für leitungsgebundene Energieträger und feste Brennstoffe Haushaltsenergie, 1970-2008

A cost burden on consumers Actual DH costs in Central and Eastern Europe

HUNGARY

Source: Household Energy Use survey (2009) – KSH and Energy Centre

AND SUSTAINABLE ENERGY POLICY

The inherited legacy VERTICAL LOOP – ONE PIPE SYSTEM

- Lack of individual metering nor temperature control
- Inability to disconnect individual apartments
- No fuel poverty-related health impacts, i.e., excess winter mortality and morbidity

AND SUSTAINABLE ENERGY POLICY

NTER FOR CLIMATE CHANGE

Source: Sigmond (2009)

A hidden fuel poverty type Effects on welfare

Decreased consumption of other domestic goods and services

Source: Tirado Herrero and Urge-Vosatz (2011)

A hidden fuel poverty type

The average debt level is about 16,5% in 2009 LITHUANIA

How deep to go?

Deep and mid retrofits of prefab panel buildings in Hungary

Additional argument for deep retrofits The *lock-in* risk

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

Arguments for public sector involvement

- Barriers to energy efficiency investments
 - Shared ownership of buildings with DH
 - Transaction costs
- Social benefits of ener. efficiency investments
 - Avoided GHG emissions (CO_2 , CH_4 and N_2O)
 - Social (external) cost of carbon: IPCC (2007)
 - Avoided non-GHG emissions (NO_x, SO_x, PM)
 - External cost of emission of pollutants: NewExt project

CENTER FOR CLIMATE CHANGE

Social cost-benefit analysis

Additional co-benefits

- Net employment creation
 - In HU and PL, tens to hundreds of thousands additional employments have been forecasted for deep retrofits (Tirado Herrero et al., 2011)
- Reduced energy dependency
- Fiscal effects
 - Increased government revenues (i.e., income tax and VAT) and reduced unemp. & social expenses
- Increased market value of properties
 - +12% premium for A-labeled properties in Holland (Brounen and Kok, 2010)

Are technical solutions enough?

Large fixed costs and structure of DH tariffs

Are technical solutions enough?

Large fixed costs and structure of DH tariffs

Are technical solutions enough? Large fixed costs and structure of DH tariffs

Are technical solutions enough? Improving the conditions under which DH is served

- Individual meter-based billing
 - Incentive to save energy at household level
 - Conventional fuel poverty effects, i.e., inadequate thermal comfort levels
- Competition between heat sources
 - Lower prices
 - Household's right to disconnect and switch
- Independent, capable regulators

CENTER FOR CLIMATE CHANGE

Source: OECD/IEA (2004); Tirado Herrero and Urge-Vosatz (2011)

The future role of DH in a low energy buildings' EU

- (?) Economic viability of the DH sector when low or nearly zero energy buildings become the norm
 - Fixed costs and obligation to remain connected
- Denmark
 - "Some of the houses being built today are so well insulated and energy efficient that it is not worth connecting them to district heat" (DAE, 2005)
- Norway
 - The obligation to remain connected to DH networks is a barrier to low-energy residential buildings (Thyholt and Hestnes, 2008)

Conclusions

- Cost burden (in CEE Member States)
- Deep retrofit of buildings with DH
 - Maximizes energy and carbon savings, co-benefits
- Sub-sector specific obstacles
 - Fixed costs, rigid tariff system
- Improved conditions for DH provision
 - Individual billing, competition, right to disconnect
- Uncertain future of the DH sector
 - Economic and labour implications
 - EXIT STRATEGY for the DH industry

CENTER FOR CLIMATE CHANGE

THANK YOU!

ĪĽ

http://3csep.ceu.hu/ 3csep@ceu.hu

