Publications of Barreneche, C.

Investigating greenhouse challenge from growing trends of electricity consumption through home appliances in buildings

Energy use in buildings accounts for 38% of global total final energy consumption, 45% of which in OECD countries. According to the International Energy Agency the continuing demand for new large and small appliances, often with new functionality, is resulting in rapidly increasing electricity consumption in both the residential and service sectors. Appliances contribution to the residential electricity use is increasing. Also, appliances types are changing in our homes. This paper aims to find the trend of energy consumption of appliances in the building sector and describing the driver of this energy consumption. For doing so, a review of the literature available in the topic is summarized first. Trends show that appliances energy consumption is growing, but also that are disproportionately powered by electricity, mainly due to the proliferation of electronics and other small household devices, especially in OECD countries. This trend, which have already brought millions of households out of poverty in China and India and promises to continually improve standards of living throughout the developing world, will also have a major impact on appliance energy consumption as many more households will be able to afford basic equipment such as refrigerators and washing machines. Moreover, because appliances generally consume electricity instead of renewable fuels or direct combustion fuels, they carry a relatively large carbon footprint in countries where electricity production is carbon intensive. Finally, appliances present significant opportunities for efficiency improvement, since most of the appliances to be implemented in the near future still have to be produced. © 2014 Elsevier Ltd.

Heating and cooling energy trends and drivers in buildings

The purpose of this paper is to provide a source of information on thermal energy use in buildings, its drivers, and their past, present and future trends on a global and regional basis. Energy use in buildings forms a large part of global and regional energy demand. The importance of heating and cooling in total building energy use is very diverse with this share varying between 18% and 73%. Biomass is still far the dominant fuel when a global picture is considered; the role of electricity is substantially growing, and the direct use of coal is disappearing from this sector, largely replaced by electricity and natural gas in the most developed regions. This paper identifies the different drivers of heating and cooling energy demand, and decomposes this energy demand into key drivers based on a Kaya identity approach: number of households, persons per household, floor space per capita and specific energy consumption for residential heating and cooling; and GDP, floor space per GDP, and specific energy consumption for commercial buildings. This paper also reviews the trends in the development of these drivers for the present, future - and for which data were available, for the past - in 11 world regions as well as globally. Results show that in a business-as-usual scenario, total residential heating and cooling energy use is expected to more or less stagnate, or slightly decrease, in the developed parts of the world. In contrast, commercial heating and cooling energy use will grow in each world region. Finally, the results show that per capita total final residential building energy use has been stagnating in the vast majority of world regions for the past three decades, despite the very significant increases in energy service levels in each of these regions.

Affordable construction towards sustainable buildings: Review on embodied energy in building materials

Affordable construction has identified low embodied energy in materials as key issue. This review paper shows that even though there is a lack of research on this topic, embodied energy and carbon are studied in the context of buildings and construction materials. Moreover, comparison between studies is not possible due to the different assumptions used by the researchers, due to the fact that most studies are focused in a given location, and also due to the great variation between data presented in the embodied energy databases available. This paper shows different studies published in scientific journal papers and carried out around the world on the accounting of embodied energy in building materials. The paper includes the boundary of each of this study, including the location, type of material or building studied, and the conclusions found. Moreover, the paper discusses the definition of embodied energy and the significance of this concept in buildings. © 2013 Elsevier B.V.